Hotline: 024.62511017

024.62511081

  Trang chủ   Sản phẩm   Phần mềm Dành cho nhà trường   Phần mềm Hỗ trợ học tập   Kho phần mềm   Liên hệ   Đăng nhập | Đăng ký

Tìm kiếm

School@net
 
Xem bài viết theo các chủ đề hiện có
  • Hoạt động của công ty (728 bài viết)
  • Hỗ trợ khách hàng (494 bài viết)
  • Thông tin tuyển dụng (57 bài viết)
  • Thông tin khuyến mại (81 bài viết)
  • Sản phẩm mới (218 bài viết)
  • Dành cho Giáo viên (552 bài viết)
  • Lập trình Scratch (3 bài viết)
  • Mô hình & Giải pháp (155 bài viết)
  • IQB và mô hình Ngân hàng đề kiểm tra (126 bài viết)
  • TKB và bài toán xếp Thời khóa biểu (242 bài viết)
  • Học tiếng Việt (182 bài viết)
  • Download - Archive- Update (289 bài viết)
  • Các Website hữu ích (71 bài viết)
  • Cùng Học (98 bài viết)
  • Learning Math: Tin học hỗ trợ học Toán trong nhà trường (74 bài viết)
  • School@net 15 năm (153 bài viết)
  • Mỗi ngày một phần mềm (7 bài viết)
  • Dành cho cha mẹ học sinh (123 bài viết)
  • Khám phá phần mềm (122 bài viết)
  • GeoMath: Giải pháp hỗ trợ học dạy môn Toán trong trường phổ thông (36 bài viết)
  • Phần mềm cho em (13 bài viết)
  • ĐỐ VUI - THƯ GIÃN (360 bài viết)
  • Các vấn đề giáo dục (1209 bài viết)
  • Bài học trực tuyến (1033 bài viết)
  • Hoàng Sa - Trường Sa (17 bài viết)
  • Vui học đường (276 bài viết)
  • Tin học và Toán học (220 bài viết)
  • Truyện cổ tích - Truyện thiếu nhi (181 bài viết)
  • Việt Nam - 4000 năm lịch sử (97 bài viết)
  • Xem toàn bộ bài viết (8222 bài viết)
  •  
    Đăng nhập/Đăng ký
    Bí danh
    Mật khẩu
    Mã kiểm traMã kiểm tra
    Lặp lại mã kiểm tra
    Ghi nhớ
     
    Quên mật khẩu | Đăng ký mới
    
     
    Giỏ hàng

    Xem giỏ hàng


    Giỏ hàng chưa có sản phẩm

     
    Bản đồ lưu lượng truy cập website
    Locations of visitors to this page
     
    Thành viên có mặt
    Khách: 4
    Thành viên: 0
    Tổng cộng: 4
     
    Số người truy cập
    Hiện đã có 84284564 lượt người đến thăm trang Web của chúng tôi.

    Toán 9 - Chương III – Góc với đường tròn - Bài 6. Cung chứa góc

    Ngày gửi bài: 28/10/2010
    Số lượt đọc: 10919

    Bài 6. Cung chứa góc

    1. Bài toán quỹ tích “cung chứa góc”

    1) Bài toán. Cho đoạn thẳng AB và góc . Tìm quỹ tích (tập hợp) các điểm M thỏa mãn . (Ta cũng nói quỹ tích các điểm M nhìn đoạn thẳng AB cho trước dưới góc ).

    ?1 Cho đoạn thẳng CD.

    a) Vẽ ba điểm N1, N2, N3 sao cho .

    b) Chứng minh rằng các điểm N1, N2, N3 nằm trên đường tròn đường kính CD.

    ?2 Vẽ một góc trên bìa cứng (chẳng hạn, góc750). Cắt ra, ta được một mẫu hình như phần gạch chéo ở hình 39. Đóng hai chiếc đinh A, B cách nhau 3cm trên một tấm gỗ phẳng.

    Tải trực tiếp tệp hình học động:L9_Ch3_b6_cung_chua_goc1.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Tải trực tiếp tệp hình học động:L9_Ch3_h39.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Dịch chuyển tấm bìa trong khe hở sao cho hai cạnh của góc luôn dính sát vào hai chiếc đinh A, B. Đánh dấu các vị trí M1, M2, M3, …, M10 của đỉnh góc.
    Qua thực hành, hãy dự đoán quỹ đạo chuyển động của điểm M.

    Theo dự đoán trên, ta sẽ chứng minh quỹ tích cần tìm là hai cung tròn.

    Chứng minh

    a) Phần thuận (h. 40).

    Trước hết, ta hãy xét một nửa mặt phẳng có bờ là đường thẳng AB.

    Giả sử M là điểm thỏa mãn và nằm trong nửa mặt phẳng đang xét. Xét cung AmB đi qua ba điểm A, M, B.

    Tải trực tiếp tệp hình học động:L9_Ch3_h40a.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Tải trực tiếp tệp hình học động:L9_Ch3_h40b.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Ta sẽ chứng minh tâm O của đường tròn chứa cung đó là một điểm cố định (không phụ thuộc M). Thực vậy, trong nửa mặt phẳng bờ AB không chứa M, kẻ tia tiếp tuyến Ax của đường tròn đi qua ba điểm A, M, B thì góc tạo bởi Ax và AB bằng , do đó tia Ax cố định. Tâm O phải nằm trên đường thẳng Ay vuông góc với Ax tại A. Mặt khác, O phải nằm trên đường trung trực d của đoạn AB. Từ đó giao điểm O của d và Ay là điểm cố định, không phụ thuộc M
    (vì nên Ay không vuông góc với AB và do đó Ay luôn cắt d tại đúng một điểm). Vậy M thuộc cung tròn AmB cố định.

    b) Phần đảo. Lấy M’ là một điểm thuộc cung AmB (h. 41), ta phải chứng minh . Thật vậy, vì là góc nội tiếp, là góc tạo bởi tia tiếp tuyến và dây cung, hai góc này cùng chắn cung AnB nên .

    Tải trực tiếp tệp hình học động:L9_Ch3_h41.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Tải trực tiếp tệp hình học động:L9_Ch3_h42.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Tương tự, trên nửa mặt phẳng đối của nửa mẳ phẳng đang xét, ta còn có cung Am’B đối xứng với cung AmB qua AB cũng có tính chất như

    Mỗi cung trên được gọi là một cung chứa góc dựng trên đoạn thẳng AB, tức là cung mà với mọi điểm M thuộc cung đó, ta đều có .

    c) Kết luận. Với đoạn thẳng AB và góc cho trước thì quỹ tích các điểm M thỏa mãn là hai cung chứa góc dựng trên đoạn AB.


    Chú ý

    - Hai cung chứa góc nói trên là hai cung tròn đối xứng với nhau qua AB.

    - Hai điểm A, B được coi là thuộc quỹ tích.

    - Khi thì hai cung AmB và Am’B là hai nửa đường tròn đường kính AB. Như vậy ta có: Quỹ tích các điểm nhìn đoạn thẳng AB cho trước dưới một góc vuông là đường tròn đường kính AB.

    - Trong hình 41, là cung chứa góc thì là cung chứa góc .

    2) Cách vẽ cung chứa góc . (Xem hình 40a, b).

    - Vẽ đường trung trực d của đoạn thẳng AB.

    - Vẽ tia Ax tạo với AB góc .

    - Vẽ đường thẳng Ay vuông góc với Ax. Gọi O là giao điểm của Ay với d.

    - Vẽ cung AmB, tâm O, bán kính OA sao cho cung này nằm ở nửa mặt phẳng bờ AB không chứa tia Ax.
    được vẽ như trên là một cung chứa góc .

    2. Cách giải bài toán quỹ tích


    Muốn chứng minh quỹ tích (tập hợp) các điểm M thỏa mãn tính chất là một hình H nào đó, ta phải chứng minh hai phần :

    Phần thuận : Mọi điểm có tính chất đều thuộc hình H.

    Phần đảo : Mọi điểm thuộc hình H đều tính chất .

    Kết luận : Quỹ tích (hay tập hợp) các điểm M có tính chất là hình H.

    (Thông thường với bài toán “Tìm quỹ tích …” ta nên dự đoán hình H trước khi chứng minh).


    Bài tập


    44. Cho tam giác ABC vuông ở A, có cạnh BC cố định. Gọi I là giao điểm của ba đường phân giác trong. Tìm quỹ tích điểm I khi A thay đổi.

    45. Cho các hình thoi ABCD có cạnh AB cố định. Tìm quỹ tích giao điểm O của hai đường chéo trong các hình thoi đó.

    46. Dựng một cung chứa góc 550 trên đoạn thẳng AB = 3cm.

    47. Gọi cung chứa góc 550 ở bài tập 46 là . Lấy điểm M1 nằm bên trong và điểm M2 nằm bên ngoài đường tròn chứa cung này sao cho M1, M2 và cung AmB nằm cùng một phía đối với đường thẳng AB. Chứng minh rằng :


    Luyện tập


    48. Cho hai điểm A, B cố định. Từ A vẽ các tiếp tuyến với các đường tròn tâm B có bán kính không lớn hơn AB. Tìm quỹ tích các tiếp điểm.

    49. Dựng tam giác ABC, biết BC = 6 cm, và đường cao AH = 4 cm.

    50. Cho đường tròn đường kính AB cố định, M là một điểm chạy trên đường tròn. Trên tia đối của tia MA lấy điểm I sao cho MI = 2MB.

    a) Chứng minh không đổi.

    b) Tìm tập hợp các điểm I nói trên.

    51. Cho I, O lần lượt là tâm đường tròn nội tiếp, tâm đường tròn ngoại tiếp tam giác ABC với . Gọi H là giao điểm của các đường cao BB’ và CC’.

    Chứng minh các điểm B, C, O, H, I cùng thuộc một đường tròn.

    52. “Góc sút” của quả phạt đền 11 mét là bao nhiêu độ ? Biết rằng chiều rộng cầu môn là 7,32 m. Hãy chỉ ra hai vị trí khác trên sân có cùng “góc sút” như quả phạt đền 11 mét.

    schoolnet



     Bản để in  Lưu dạng file  Gửi tin qua email


    Những bài viết khác:



    Lên đầu trang

     
    CÔNG TY CÔNG NGHỆ TIN HỌC NHÀ TRƯỜNG
     
    Phòng 804 - Nhà 17T1 - Khu Trung Hoà Nhân Chính - Quận Cầu Giấy - Hà Nội
    Phone: 024.62511017 - 024.62511081
    Email: kinhdoanh@schoolnet.vn


    Bản quyền thông tin trên trang điện tử này thuộc về công ty School@net
    Ghi rõ nguồn www.vnschool.net khi bạn phát hành lại thông tin từ website này
    Site xây dựng trên cơ sở hệ thống NukeViet - phát triển từ PHP-Nuke, lưu hành theo giấy phép của GNU/GPL.