Hotline: 024.62511017

024.62511081

  Trang chủ   Sản phẩm   Phần mềm Dành cho nhà trường   Phần mềm Hỗ trợ học tập   Kho phần mềm   Liên hệ   Đăng nhập | Đăng ký

Tìm kiếm

School@net
 
Xem bài viết theo các chủ đề hiện có
  • Hoạt động của công ty (728 bài viết)
  • Hỗ trợ khách hàng (494 bài viết)
  • Thông tin tuyển dụng (57 bài viết)
  • Thông tin khuyến mại (81 bài viết)
  • Sản phẩm mới (218 bài viết)
  • Dành cho Giáo viên (552 bài viết)
  • Lập trình Scratch (3 bài viết)
  • Mô hình & Giải pháp (155 bài viết)
  • IQB và mô hình Ngân hàng đề kiểm tra (126 bài viết)
  • TKB và bài toán xếp Thời khóa biểu (242 bài viết)
  • Học tiếng Việt (182 bài viết)
  • Download - Archive- Update (289 bài viết)
  • Các Website hữu ích (71 bài viết)
  • Cùng Học (98 bài viết)
  • Learning Math: Tin học hỗ trợ học Toán trong nhà trường (74 bài viết)
  • School@net 15 năm (153 bài viết)
  • Mỗi ngày một phần mềm (7 bài viết)
  • Dành cho cha mẹ học sinh (123 bài viết)
  • Khám phá phần mềm (122 bài viết)
  • GeoMath: Giải pháp hỗ trợ học dạy môn Toán trong trường phổ thông (36 bài viết)
  • Phần mềm cho em (13 bài viết)
  • ĐỐ VUI - THƯ GIÃN (360 bài viết)
  • Các vấn đề giáo dục (1209 bài viết)
  • Bài học trực tuyến (1033 bài viết)
  • Hoàng Sa - Trường Sa (17 bài viết)
  • Vui học đường (276 bài viết)
  • Tin học và Toán học (220 bài viết)
  • Truyện cổ tích - Truyện thiếu nhi (181 bài viết)
  • Việt Nam - 4000 năm lịch sử (97 bài viết)
  • Xem toàn bộ bài viết (8223 bài viết)
  •  
    Đăng nhập/Đăng ký
    Bí danh
    Mật khẩu
    Mã kiểm traMã kiểm tra
    Lặp lại mã kiểm tra
    Ghi nhớ
     
    Quên mật khẩu | Đăng ký mới
    
     
    Giỏ hàng

    Xem giỏ hàng


    Giỏ hàng chưa có sản phẩm

     
    Bản đồ lưu lượng truy cập website
    Locations of visitors to this page
     
    Thành viên có mặt
    Khách: 5
    Thành viên: 0
    Tổng cộng: 5
     
    Số người truy cập
    Hiện đã có 84393337 lượt người đến thăm trang Web của chúng tôi.

    Toán 12 - Chương I - BÀI 3. Khái niệm về thể tích của khối đa diện

    Ngày gửi bài: 08/11/2010
    Số lượt đọc: 5104

    Thể tích của một khối đa diện hiểu theo nghĩa thông thường là số đo độ lớn phần không gian mà nó chiếm chỗ. Từ xa xưa con người đã tìm cách đo thể tích của các khối vật chất trong tự nhiên.

    Đối với những vật thể lỏng, như khối nước trong một cái bể chứa, người ta có thể dùng những cái thùng có kích thước nhỏ hơn để đong. Đối với những vật rắn có kích thước nhỏ người ta có thể thả chúng vào một cái thùng đổ đầy nước rồi đo lượng nước trào ra... Tuy nhiên trong thực tế có nhiều vật thể không thể đo được bằng những cách trên. Chẳng hạn để đo thể tích của kim tự tháp Ai Cập ta không thể nhúng nó vào nước hay chia nhỏ nó ra được. Vì vậy người ta tìm cách thiết lập những công thức tính thể tích của một số khối đa diện đơn giản khi biết kích thước của chúng, rồi từ đó tìm cách tính thể tích của các khối đa diện phức tạp hơn.

    I. KHÁI NIỆM VỀ THỂ TÍCH KHỐI ĐA DIỆN

    Người ta chứng minh được rằng : có thể đặt tương ứng cho mỗi khối đa diện (H) một số dương duy nhất V(H) thoả mãn các tính chất sau:

    a) Nếu (H) là khối lập phương có cạnh bằng 1 thì V(H) = 1.

    b) Nếu hai khối đa diện (H1) và (H2) bằng nhau thì V(H1) = V(H2)

    c) Nếu khối đa diện (H) được phân chia thành hai khối đa diện (H1) và (H2) thì: V(H) = V(H1) + V(H2)

    Số dương V(H) nói trên được gọi là thể tích của khối đa diện (H). Số đó cũng được gọi là thể tích của hình đa diện giới hạn khối đa diện (H).

    Khối lập phương có cạnh bằng 1 được gọi là khối lập phương đơn vị.

    Bây giờ ta sẽ xét thể tích của khối hộp chữ nhật có ba kích thước là a, b, c.

    Ví dụ. Tính thể tích của khối hộp chữ nhật có ba kích thước là những số nguyên dương.


    Hình 1.25


    Tải trực tiếp tệp hình học động ( Nhấn phải chuột vào liên kết rồi chọn Save Target As ): L12cb_Ch1_h1.25.cg3

    Xem trực tiếp hình học động trên màn hình. ( Nếu không xem được hình ảnh hiển thị xin vui lòng cài đặt Cabri 3D Plugin: Cabri3D_Plugin_212b_Win.exe )


    Hình 1.25a


    Tải trực tiếp tệp hình học động ( Nhấn phải chuột vào liên kết rồi chọn Save Target As ): L12cb_Ch1_h1.25a.cg3

    Xem trực tiếp hình học động trên màn hình. ( Nếu không xem được hình ảnh hiển thị xin vui lòng cài đặt Cabri 3D Plugin: Cabri3D_Plugin_212b_Win.exe )


    Hình 1.25c


    Tải trực tiếp tệp hình học động ( Nhấn phải chuột vào liên kết rồi chọn Save Target As ): L12cb_Ch1_h1.25c.cg3

    Xem trực tiếp hình học động trên màn hình. ( Nếu không xem được hình ảnh hiển thị xin vui lòng cài đặt Cabri 3D Plugin: Cabri3D_Plugin_212b_Win.exe )

    Gọi (H0) là khối lập phương đơn vị.

    - Gọi (H1) là khối hộp chữ nhật có ba kích thước a = 5, b = 1, c= 1.

    1 Có thể chia (H1) thành bao nhiêu khối lập phương bằng (H0) ?

    Khi đó ta có V(H1) = 5.V(H0) = 5

    - Gọi (H2) là khối hộp chữ nhật có ba kích thước a = 5, b = 4, c = 1.

    2 Có thể chia (H2) thành bao nhiêu khối hộp chữ nhật bằng (H1) ?

    Khi đó ta có V(H2) = 4.V(H1) = 4.5 = 20

    - Gọi (H) là khối hộp chữ nhật có ba kích thước a = 5, b = 4, c = 3.

    3 Có thể chia (H) thành bao nhiêu khối hộp chữ nhật bằng (H2) ?

    Khi đó ta có V(H) = 3.V(H2) = 3.4.5 = 60 (h.1.25).

    Lập luận tương tự trên, ta suy ra: thể tích của khối hộp chữ nhật (H) có ba kích thước là những số nguyên dương a, b, c là V(H) = abc.

    Người ta chứng minh được rằng công thức trên cũng đúng đối với hình hộp chữ nhật có ba kích thước là những số dương. Ta có định lí sau:

    Định lí

    Thể tích của một khối hộp chữ nhật bằng tích ba kích thước của nó.

    II. THỂ TÍCH KHỐI LĂNG TRỤ

    Nếu ta xem khối hộp chữ nhật ABCD.A’B’C’D’ như là khối lăng trụ có đáy là hình chữ nhật A’B’C’D’ và đường cao AA’ thì từ định lí trên suy ra thể tích của nó bằng diện tích đáy nhân với chiều cao. Ta có thể chứng minh được rằng điều đó cũng đúng với một khối lăng trụ bất kì (h.1.26).


    Hình 1.26


    Tải trực tiếp tệp hình học động ( Nhấn phải chuột vào liên kết rồi chọn Save Target As ): L12cb_Ch1_h1.26.cg3

    Xem trực tiếp hình học động trên màn hình. ( Nếu không xem được hình ảnh hiển thị xin vui lòng cài đặt Cabri 3D Plugin: Cabri3D_Plugin_212b_Win.exe )

    Định lí

    Thể tích của khối lăng trụ có diện tích đáy B và chiều cao h là

    V = Bh.

    III-THỂ TÍCH KHỐI CHÓP

    Đối với khối chóp, người ta chứng minh được định lí sau:

    Định lí

    Thể tích của khối chóp có diện tích đáy B và chiều cao h là

    Ta cũng gọi thể tích các khối đa diện, khối lăng trụ, khối chóp đã nói ở trên lần lượt là thể tích các hình đa diện, hình lăng trụ, hình chóp xác định chúng.

    4 Kim tự tháp ở Ai Cập (h.1.27) được xây dựng vào khoảng 2500 năm trước Công nguyên. Kim tự tháp này là một khối chóp tứ giác đều có chiều cao 147m, cạnh đáy dài 230m. Hãy tính thể tích của nó.


    Hình 1.27

    Tải trực tiếp tệp hình học động:L12cb_Ch1_h1.27.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Ví dụ

    Cho hình lăng trụ tam giác ABC.A’B’C’. Gọi E và F lần lượt là trung điểm của các cạnh AA’ và BB’. Đường thẳng CE cắt đường thẳng C’A’ tại E’. Đường thẳng CF cắt đường thẳng C’B’ tại F’. Gọi V là thể tích khối lăng trụ ABC.A’B’C’.

    a) Tính thể tích khối chóp C.ABFE theo V.

    b) Gọi khối đa diện (H) là phần còn lại của khối lăng trụ ABC.A’B’C’ sau khi cắt bỏ đi khối chóp C.ABFE. Tính tỉ số thể tích của (H) và của khối chóp C.C’E’F’.

    Giải

    a) Hình chóp C.A’B’C’ và hình lăng trụ ABC.A’B’C’ có đáy và đường cao bằng nhau nên

    Do EF là đường trung bình của hình bình hành ABB’A’ nên diện tích ABFE bằng nửa diện tích ABB’A’. Do đó


    Hình 1.28


    Tải trực tiếp tệp hình học động ( Nhấn phải chuột vào liên kết rồi chọn Save Target As ): L12cb_Ch1_h1.28.cg3

    Xem trực tiếp hình học động trên màn hình. ( Nếu không xem được hình ảnh hiển thị xin vui lòng cài đặt Cabri 3D Plugin: Cabri3D_Plugin_212b_Win.exe )

    BÀI TẬP

    1. Tính thể tích khối tứ diện đều cạnh a.

    2. Tính thể tích khối bát diện đều cạnh a.

    3. Cho hình hộp ABCD.A’B’C’D’. Tính tỉ số thể tích của khối hộp đó và thể tích của khối tứ diện ACB’D’.

    4. Cho hình chóp S.ABC. Trên các đoạn thẳng SA, SB, SC lần lượt lấy ba điểm A’, B’, C’ khác với S. Chứng minh rằng:

    5. Cho tam giác ABC vuông cân ở A và AB = a. Trên đường thẳng qua C và vuông góc với mặt phẳng (ABC) lấy điểm D sao cho CD = a. Mặt phẳng qua C vuông góc với BD, cắt BD tại F và cắt AD tại E. Tính thể tích khối tứ diện CDEF theo a.

    6. Cho hai đường thẳng chéo nhau d và d’. Đoạn thẳng AB có độ dài a trượt trên d, đoạn thẳng CD có độ dài b trượt trên d’. Chứng minh rằng khối tứ diện ABCD có thể tích không đổi.

    Schoolnet



     Bản để in  Lưu dạng file  Gửi tin qua email


    Những bài viết khác:



    Lên đầu trang

     
    CÔNG TY CÔNG NGHỆ TIN HỌC NHÀ TRƯỜNG
     
    Phòng 804 - Nhà 17T1 - Khu Trung Hoà Nhân Chính - Quận Cầu Giấy - Hà Nội
    Phone: 024.62511017 - 024.62511081
    Email: kinhdoanh@schoolnet.vn


    Bản quyền thông tin trên trang điện tử này thuộc về công ty School@net
    Ghi rõ nguồn www.vnschool.net khi bạn phát hành lại thông tin từ website này
    Site xây dựng trên cơ sở hệ thống NukeViet - phát triển từ PHP-Nuke, lưu hành theo giấy phép của GNU/GPL.