Hotline: 024.62511017

024.62511081

  Trang chủ   Sản phẩm   Phần mềm Dành cho nhà trường   Phần mềm Hỗ trợ học tập   Kho phần mềm   Liên hệ   Đăng nhập | Đăng ký

Tìm kiếm

School@net
 
Xem bài viết theo các chủ đề hiện có
  • Hoạt động của công ty (728 bài viết)
  • Hỗ trợ khách hàng (494 bài viết)
  • Thông tin tuyển dụng (57 bài viết)
  • Thông tin khuyến mại (81 bài viết)
  • Sản phẩm mới (218 bài viết)
  • Dành cho Giáo viên (552 bài viết)
  • Lập trình Scratch (3 bài viết)
  • Mô hình & Giải pháp (155 bài viết)
  • IQB và mô hình Ngân hàng đề kiểm tra (126 bài viết)
  • TKB và bài toán xếp Thời khóa biểu (242 bài viết)
  • Học tiếng Việt (182 bài viết)
  • Download - Archive- Update (289 bài viết)
  • Các Website hữu ích (71 bài viết)
  • Cùng Học (98 bài viết)
  • Learning Math: Tin học hỗ trợ học Toán trong nhà trường (74 bài viết)
  • School@net 15 năm (153 bài viết)
  • Mỗi ngày một phần mềm (7 bài viết)
  • Dành cho cha mẹ học sinh (123 bài viết)
  • Khám phá phần mềm (122 bài viết)
  • GeoMath: Giải pháp hỗ trợ học dạy môn Toán trong trường phổ thông (36 bài viết)
  • Phần mềm cho em (13 bài viết)
  • ĐỐ VUI - THƯ GIÃN (360 bài viết)
  • Các vấn đề giáo dục (1209 bài viết)
  • Bài học trực tuyến (1033 bài viết)
  • Hoàng Sa - Trường Sa (17 bài viết)
  • Vui học đường (276 bài viết)
  • Tin học và Toán học (220 bài viết)
  • Truyện cổ tích - Truyện thiếu nhi (181 bài viết)
  • Việt Nam - 4000 năm lịch sử (97 bài viết)
  • Xem toàn bộ bài viết (8222 bài viết)
  •  
    Đăng nhập/Đăng ký
    Bí danh
    Mật khẩu
    Mã kiểm traMã kiểm tra
    Lặp lại mã kiểm tra
    Ghi nhớ
     
    Quên mật khẩu | Đăng ký mới
    
     
    Giỏ hàng

    Xem giỏ hàng


    Giỏ hàng chưa có sản phẩm

     
    Bản đồ lưu lượng truy cập website
    Locations of visitors to this page
     
    Thành viên có mặt
    Khách: 5
    Thành viên: 0
    Tổng cộng: 5
     
    Số người truy cập
    Hiện đã có 82283806 lượt người đến thăm trang Web của chúng tôi.

    Toán 10 - Chương II: Tích vô hướng của 2 vectơ - BÀI 3. CÁC HỆ THỨC LƯỢNG TRONG TAM GIÁC

    Ngày gửi bài: 01/11/2010
    Số lượt đọc: 9520

    Chúng ta biết rằng một tam giác được hoàn toàn xác định nếu biết một số yếu tố, chẳng hạn biết ba cạnh, hoặc hai cạnh và góc xen giữa hai cạnh đó.

    Như vậy giữa các cạnh và các góc của một tam giác có một mối liên hệ xác định nào đó mà ta sẽ gọi là các hệ thức lượng trong tam giác. Trong phần này chúng ta sẽ nghiên cứu những hệ thức đó và các ứng dụng của chúng.

    Đối với tam giác ABC ta thường kí hiệu: a = BC, b = CA, C=AB.

    1.Tam giác ABC vuông tại A có đường cao AH = h và có BC = a, CA=b, AB=c. Gọi BH = c’ và CH=b’ (h.2.11) Hãy điền vào các ô trống trong các hệ thức sau đây để được các hệ thức lượng trong tam giác vuông:

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.11.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Trước tiên ta tìm hiểu hai hệ thức lượng cơ bản trong tam giác bất kì là định lí côsin và định lí sin.

    1. Định lí côsin

    a) Bài toán. Trong tam giác ABC cho biết hai cạnh AB, AC và góc A, hãy tính cạnh BC (h.2.12)

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.12.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    GIẢI


    Từ kết quả của bài toán trên ta suy ra định lí sau đây:

    b) Định lí côsin

    Trong tam giácABC bất kì với BC = a, CA=b, AB = c ta có:

    2.Hãy phát biểu định lí côsin bằng lời.

    3.Khi ABC là tam giác vuông, định lí côsin trở thành định lí quen thuộc nào?

    Từ định lí côsin ta suy ra:

    Hệ quả

    c) Áp dụng. Tính độ dài đường trung tuyến của tam giác.

    Cho tam giác ABC có các cạnh BC = a, CA = b, AB = c. Gọi ma ,
    mb và mc là độ dài các đường trung tuyến lần lượt vẽ từ các đỉnh A,B và C của tam giác. Ta có:


    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.13.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Thật vậy, gọi M là trung điểm của cạnh BC, áp dụng định lí côsin vào tam giác AMB ta có:


    4.Cho tam giác ABC có a = 7 cm, b = 8 cm và c = 6cm. Hãy tính độ dài đường trung tuyến ma của tam giác ABC đã cho.

    d) Ví dụ

    Ví dụ 1. Cho tam giác ABC có các cạnh AC = 10 cm, BC = 16 cm và góc . Tính cạnh AB và các góc A,B của tam giác đó.

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.14.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    GIẢI

    Đặt BC = a, CA = b, AB = c..

    Theo định lí


    Ví dụ 2. Hai lực cho trước cùng tác dụng lên một vật và tạo thành góc nhọn . Hãy lập công thức tính cường độ của hợp lực .

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.15.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    GIẢI

    2. Định lí sin

    5.Cho tam giác ABC vuông ở A nội tiếp trong đường tròn bán kính R và có BC = a, CA = b, AB = c. Chứng minh hệ thức:

    Đối với tam giác bất kì ta cũng có hệ thức trên. Hệ thức này được gọi là định lí sin trong tam giác.

    a) Định lí sin

    Trong tam giác ABC bất kì với BC = a, CA = b, AB = C và R là bán kính đường tròn ngoại tiếp, ta có:

    CHỨNG MINH. Ta chứng minh hệ thức . Xét hai trường hợp:

    Nếu góc nhọn, ta vẽ đường kính BD của đường tròn ngoại tiếp tam giác ABC và khi đó vì tam giác BCD vuông tại C nên ta có hay hay .

    Tải trực tiếp tệp hình học động: L10_cb_Ch2_h2.16a.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Tải trực tiếp tệp hình học động: L10_cb_Ch2_h2.16b.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Nếu góc A tù, ta cũng vẽ đường kính BD của đường tròn tâm O ngoại tiếp tam giác ABC (h.2.16b). Tứ giác ABCD nội tiếp đường tròn tâm O nên Do đó . Ta cũng có BC = BD.sin D hay a = BD.sinA. Vậy a = 2R.sin A hay .

    GIẢI

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.17.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    3. Công thức tính diện tích tam giác


    Ta kí hiệu ha, hb, hc là các đường cao của tam giác ABC lần lượt vẽ từ các đỉnh A,B,C và S là diện tích tam giác đó.

    7. Hãy viết các công thức tính diện tích tam giác theo một cạnh và đường cao tương ứng.
    Cho tam giác ABC có các cạnh BC = a, CA= b, AB = c. Gọi R và r lần lượt là bán kính đường tròn ngoại tiếp, nội tiếp tam giác và là nửa chu vi của tam giác.

    Diện tích S của tam giác ABC được tính theo một trong các công thức sau


    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.18.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.18a.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.18b.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.18c.ggb

    Xem trực tiếp hình vẽ động trên màn hình.


    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.19.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Ta thừa nhận công thức Hê-rông.


    Ví dụ 1. Tam giác ABC có các cạnh a = 13m, b = 14m và c = 15m.

    a) Tính diện tích tam giác ABC.

    b) Tính bán kính đường tròn nội tiếp và ngoại tiếp tam giác ABC.

    GIẢI

    a) Ta có . Theo công thức Hê-rông ta có:

    .
    b) Áp dụng công thức S = pr ta có

    .

    Vậy đường tròn nội tiếp tam giác ABC có bán kính là r = 4m.


    GIẢI

    Theo định lí côsin ta có:

    4. Giải tam giác và ứng dụng vào việc đo đạc

    a) Giải tam giác

    Giải tam giác là tìm một số yếu tố của tam giác khi cho biết các yếu tố khác.

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.20.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Muốn giải tam giác ta thường sử dụng các hệ thức đã được nêu lên trong định lí côsin, định lí sin và các công thức tính diện tích tam giác.

    Ví dụ 1. Cho tam giác ABC biết cạnh a = 17,4m, và các cạnh b,c.

    GIẢI

    Ví dụ 2. Cho tam giác ABC có cạnh cm, cm và

    GIẢI

    Theo định lí côsin ta có


    Ví dụ 3. Cho tam giác ABC có cạnh a = 24cm, b = 13cm và c = 15cm. Tính diện tích s của tam giác và bán kính r của đường tròn nội tiếp.

    GIẢI

    Theo định lí côsin ta có

    b) Ứng dụng vào việc đo đạc



    Bài toán 1. Đo chiều cao của một cái tháp mà không thể đến được chân tháp.

    Giả sử CD = h là chiều cao của tháp trong đó C là chân tháp. Chọn hai điểm A,B trên mặt đất sao cho ba điểm A,B và C thẳng hàng. Ta đo khoảng cách AB và các góc . Chẳng hạn ta đo được AB = 24m, Khi đó chiều cao h của tháp được tính như sau:

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.21.ggb

    Xem trực tiếp hình vẽ động trên màn hình.


    Áp dụng định lí sin vào tam giác ABD ta có

    Bài toán 2. Tính khoảng cách từ một địa điểm trên bờ sông đến một gốc cây trên một cù lao ở giữa sông.

    Để đo khoảng cách từ một điểm A trên bờ sông đến gốc cây C trên cù lao giữa sông, người ta chọn một điểm B cùng ở trên bờ với A sao cho từ A và B có thể nhìn thấy điểm C. Ta đo khoảng cách AB, góc . Chẳng hạn ta đo được m, , .

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.22.ggb

    Xem trực tiếp hình vẽ động trên màn hình.

    Khi đó khoảng cách AC được tính như sau:

    Áp dụng định lí sin vào tam giác ABC, ta có

    Câu hỏi và bài tập

    1. Cho tam giác ABC vuông tại A, và cạnh a = 72cm. Tính , cạnh b, cạnh c và đường cao ha.


    2. Cho tam giácABC biết các cạnh a = 52,1cm; b = 85cm và c = 54cm. Tính các góc


    3. Cho tam giác ABC có , cạnh b = 8cm và c = 5cm. Tính cạnh a, và các góc của tam giác đó.


    4. Tính diện tích của tam giác có số đo các cạnh lần lượt là 7,9 và 12.

    5. Tam giác ABC có . Tính cạnh cho biết cạnh AC = m và AB = n.


    6. Tam giác ABC có các cạnh a = 8cm, b = 10cm và c = 13cm.

    a) Tam giác đó có góc tù không?

    b) Tính độ dài trung tuyến MA của tam giác ABC đó.


    7. Tính góc lớn nhất của tam giác ABC biết

    a) Các cạnh a = 3cm, b = 4cm và c = 6cm.

    b) Các cạnh a = 40cm, b = 13cm và c = 27cm.


    8. Cho tam giác ABC biết cạnh a= 137,5cm, . Tính góc A, bán kính R của đường tròn ngoại tiếp, cạnh b và c của tam giác.


    9. Cho hình bình hành ABCD có AB = a, BC = b, BD = m và AC = n . Chứng minh rằng m2 + n2 = 2(a2 + b2).


    10. Hai chiếc tàu thủy P và Q cách nhau 300m. Từ P và Q thẳng hàng với chân A của tháp hải đăng AB ở trên bờ biển người ta nhìn chiều cao AB của tháp dưới các góc

    . Tính chiều cao của tháp.

    11. Muốn đo chiều cao của Tháp Chàm Por Klong Garai ở Ninh Thuận (h.2.23), người ta lấy hai điểm A và B trên mặt đất có khoảng cách AB = 12m cùng thẳng hàng với chân C của tháp để đặt hai giác kế (h.2.24). Chân của giác kế có chiều cao h = 1,3m. Gọi D là đỉnh tháp và hai điểm A1, b1 cùng thẳng hàng với C1 thuộc chiều cao CD của tháp. Người ta đo được .
    Tính chiều cao CD của tháp đó.

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.23-24.ggb”

    Xem trực tiếp hình vẽ động trên màn hình.

    Bạn có biết

    Người ta đã đo khoảng cách

    giữa Trái Đất và Mặt Trăng như thế nào?

    Tải trực tiếp tệp hình học động:L10_cb_Ch2_h2.25.ggb”

    Xem trực tiếp hình vẽ động trên màn hình.

    Loài người đã biết được khoảng cách giữa Trái Đất và Mặt Trăng cách đây khoảng hai ngàn năm với một độ chính xác tuyệt vời là vào khoảng 384 000 km. Sau đó khoảng cách giữa Trái Đất và Mặt Trăng đã được xác lập một cách chắc chắn vào năm 1751 do một nhà thiên văn người Pháp là Giô-dep La-lăng (Joseph Lalande, 1732-1807) và một nhà toán học người Pháp là Ni-cô-la La-cay (Nicolas Lacaille,1713 – 1762). Hai ông đã phối hợp tổ chức đứng ở hai địa điểm rất xa nhau, một người ở Bec-lin gọi là điểm A, còn người kia ở Mũi Hảo Vọng (Bonne-Espérance) một mũi đất ở cực nam châu Phi, gọi là điểm B (h. 2.25). Gọi C là một điểm trên Mặt Trăng. Từ A và B người ta đo và tính được các góc A,B và cạnh AB của tam giác ABC.

    Trong mặt phẳng (ABC), gọi tia Ax là đường chân trời vẽ từ đỉnh A và tia By là đường chân trời vẽ từ đỉnh B. Kí hiệu .

    Gọi là tâm Trái Đất, ta có:

    Vì biết độ dài cung nên ta tính được góc AOB và do đó tính được độ dài cạnh AB. Tam giác ABC được xác định vì biết “góc – cạnh – góc” của tam giác đó. Từ đó ta có thể tính được chiều cao CH của tam giác ABC là khoảng cách cần tìm. Người ta nhận thấy rằng khoảng cách này gần bằng mười lần độ dài xích đạo của Trái Đất

    schoolnet



     Bản để in  Lưu dạng file  Gửi tin qua email


    Những bài viết khác:



    Lên đầu trang

     
    CÔNG TY CÔNG NGHỆ TIN HỌC NHÀ TRƯỜNG
     
    Phòng 804 - Nhà 17T1 - Khu Trung Hoà Nhân Chính - Quận Cầu Giấy - Hà Nội
    Phone: 024.62511017 - 024.62511081
    Email: kinhdoanh@schoolnet.vn


    Bản quyền thông tin trên trang điện tử này thuộc về công ty School@net
    Ghi rõ nguồn www.vnschool.net khi bạn phát hành lại thông tin từ website này
    Site xây dựng trên cơ sở hệ thống NukeViet - phát triển từ PHP-Nuke, lưu hành theo giấy phép của GNU/GPL.